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Abstract

The main objective of this project is to extend the technical state-of-the-art in mid-level visual
and auditory signal processing using an integrative biologically inspired approach. Though our
research and development efforts are focused on different levels of sensory information
processing, from low-level sensory adaptation to object selection and recognition, all of our
efforts described in this progress report intersect at the level of features: what low level sensory
features to extract, what methods used to extract them, and how to adapt feature detector
parameters, such as their gains, in order to perform optimally in changing environments. In this
progress report, we detail developments in 4 areas:

1. Use of Kalman filters to model as-yet unexplained features of visual speed adaptation in
human observers. These experiments bear on optimal adaptation/gain control
mechanisms for the extraction of a broad class of low-level features in non-stationary
natural environments;

2. Continuing development and testing of low-level image features needed for junction
detection, including center-surround, edge, endstop, and corner detectors that include
gain control mechanisms (see item 1 above). Junctions (L vs. T vs. Y, etc.) are known to
be critical for both 2-D and 3-D object classification, one of the key long-term goals of
this project;

3. Refinement of low level features needed for sound classification in both clean and noisy
environments; the features we are exploring in the auditory domain are closely related to
those used in vision (see items 1 and 2 above), including center-surround and oriented
operators; we continue to explore commonalities between the two sensory domains;

4. Continuing development of a vertically integrated system that combines low-level feature
extraction, attentional mechanisms, and simple object recognition to control a robot arm
engaged in a task.

Recent progress in each of these areas is outlined in the following sections.



1. Speed Adaptation as Kaiman Filtering

One of the main weaknesses of artificial scene-understanding systems is their inability to adapt
to new environments. If, for example, a robotic submarine moves from shallow waters to deeper
waters, the statistics of the visual environment change significantly. The intensity and
chromaticity of light changes with depth, and absorption and scattering in water cause the
background visual texture to lose high spatial frequencies (Balboa & Grzywacz, 2003). If an
imagine analyzer has limited dynamic range, then this device may not be simultaneously optimal
in deep and shallow water. Similar difficulties arise on land when dealing with changing lighting
and contrast conditions, different backgrounds (desert vs. forest), and so on. The retina and the
brain, however, have numerous adaptation mechanisms that allow them to perform near-
optimally under changing conditions. The key is to continuously optimize the system's
parameters by comparing samples from the environment with predictions based on internal
models of the environment. If the samples agree with the predictions, then the model parameters
remain constant. If they disagree, parameters are modified according to an optimal protocol
prescribed by a generalized Kalman-filtering strategy. This strategy is not limited to speed (Fig.
1) and contrast adaptation (Grzywacz & De Juan, 2003), which we have so far experimentally
explored. The approach can be applied as well to other types of visual feature extraction (see
item 2), or to systems engaged in sound interpretation (see item 3), as long as good
measurements-and good models-of the natural signal statistics can be obtained.

Given its potential importance in understanding sensory adaptation in general, we have been
investigating whether the human visual system uses Kalman filtering for sensory adaptation, and
in particular, for speed adaptation. Speed adaptation occurs when an observer is exposed to high
(or low) optic flow speeds for extended periods of time (e.g. drivers, pilots), and results in an
altered perception of flow speeds and in particular a reduction (or increase) in perceived speed
under default conditions. To quantify and model this, we performed a speed-matching
experiment to evaluate the time course of adaptation to an abrupt velocity change. Experimental
results are in good agreement with Kalman-filter predictions for speed adaptation. When
subjects adapt to a low speed display that suddenly increases in speed, the time course of
adaptation unfolds in two phases with different time constants: a rapid decrease of perceived
speed followed by a slower phase (Fig. 1A). In contrast, when speed changes from fast to slow,
speed adaptation follows a single time course (Fig. 1B). A Kalman filter model predicts this
asymmetry: Low speeds are much more common than high speeds in natural environments, so
that a transition to higher speeds, which are rare, provides strong evidence for a shift in
environment. This triggers a rapid initial phase of adaptation (followed by a more conservative
period of gradual adjustment). In contrast, a sudden transition to lower speeds, which are more
common in any given environment, is more consistent with an unchanged environment, leading
to a gradual (single time constant) adaptation. Interestingly, we found both in simulations and in
psychophysical experiments on human subjects that the difference between slow-to-fast and fast-
to-slow adaptation disappears when the adapting stimulus is noisy (Figs. IC and D).

Based on these validations of the Kalman-filtering model in human subjects, we are exploring
ways to implement similar optimal adaptation strategies to improve the performance of our low-
level feature extraction methods.
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Figure 1. Results of the psychophysical experiments. Each panel shows the speed bias as
a function of time for one experimental situation and two subjects. Panels A and B show
the results for the noise-free situation. Panel A shows that for slow-to-fast transition, the
bias presents two temporal phases, such as those found with model simulations. On the
other hand, results show that the bias occurs in a single phase for the fast-to-slow
transition (Panel B). As predicted by the model, when we apply noise to the stimulus, the
bias occurs in one phase for both transitions (Panels C and D).

2. Feature Extraction for Junction Classification

As discussed in our last progress report, we are developing a hierarchical, nested self-organizing
feature map (SOFM) architecture to learn to classify junctions (and eventually objects) in
complex visual scenes. Correct classifications of junctions are important given that they are
known to be vital for shape-based object recognition. However, reliably extracting junctions in
video images has proven to be enormously technically challenging.

As a prelude to junction detection, we have followed the example of biological visual systems by
focusing our recent efforts on the development of robust edge, endstop and comer detectors-the
ingredients from which junction detectors can be built-and that function well under wide
ranging scene conditions. We have recently developed an endstop detector designed to respond
strongly to edges that either terminate or abruptly change direction, and a complementary
detector with a center-surround organization that responds well to comers (Fig. 2).



Figure 2. Endstopped edge (red) and comer detector (green) applied to an image; lower frame is
enlarged to show detail.



The detectors are nonlinear in their construction. For example, the edge and endstop detectors,
unlike linear filters, each rely on multiple tests of proper edge structure along the filter's length,
each of which is run through a saturating nonlinearity to introduce a degree of image contrast
invariance, while the center-surround filter performs a comparable series of radially-oriented
tests. Both types of filters also include a divisive normalization operation that implements a
form of adaptive gain control similar in spirit to that discussed in Section 1 above. As shown in
Fig. 2 (conventional edge responses were omitted for clarity), the endstop and center-surround
filters concentrate their activity mostly on appropriate small image structures, with occasional
errors that we are investigating and attempting to eliminate. We have noted in previous
experiments that junction detectors, because they rely on information from multiple edge and
endstop detectors, often respond more cleanly than the pattern of lower-level detector activations
might suggest. We expect the same will hold true here as we incorporate these low-level
features into our SOFM learning model.

3. Biologically Inspired Speech and Audio Processing

In our previous work, we worked with a detailed early auditory model that mimics the processing
stages starting from outer ear to cochlear nucleus via band-pass basilar membrane filters, ear hair
cell stages and lateral inhibitory network followed by a leaky integration. It was shown that the
derived MFCC-equivalent auditory based features (ABF) outperformed the MFCC features in a
speaker independent noisy digit recognition task using Aurora2 database. Also, we used principal
component analysis (PCA) to find the important components of the output of leaky-integrate-
and-fire (LIF) neuron aiming for noise and dimension reduction. This new feature set (PC-ABF)
was beneficial in the recognition task for speech with low SNR, but performed poorly compared
to ABF and MFCC for cleaner speech (Fig 1).

Auditory nerves have limited dynamic range. The dynamic range of the basilar membrane and
the neural response are compressed nonlinearly by outer hair cells. The outer hair cells provide
greater amplification to low signal levels. We modified the early auditory model, and used
logarithmic amplitude transformation to model the nonlinear compression due to outer hair cells,
and then applied PCA. This new features are called LPCA_ABF. We achieved the best ASR
performance by keeping 25 principal components with LPCAABF features. The ASR
experiment results are summarized in Fig 1. With this new set of features, our ASR performance
improved even more for speech with low SNR, and the ASR performance degradation for speech
with moderate to high SNR faced with using PC ABF feature set was also removed. The data
used in these experiments contained subway noise. Also, we got similar results in the ASR
experiments for speech with babble, car, and exhibition noise given in the Aurora2 database. Our
ASR results indicate that the LPCAABF provides on average 40% WER improvement over
MFCC in noisy speech recognition (averaged over all four types of noise and for all SNR levels).
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Figure 3. ASR experiment results for speech Figure 4. Comparison of ASR performance
for with subway noise in a digit recognition task. different feature sets with subway noise.

One of the issues we discussed in the most recent ONR meeting was discrimination ability of
features. Thus, we also implemented linear discriminant analysis (LDA) to improve the
discrimination between classes, and to reduce dimension of auditory peripheral model output.
Here, each digit is associated to a class, so there are d = 12 classes i.e., one through nine, zero,
oh, and silence. The training data (clean speech) is automatically segmented in word level by
using force alignment using acoustic models trained with MFCC since it is more accurate for
clean speech. The LDA transformation matrix is learnt from the labeled training corpus, and the
output of early auditory system is projected to (d -1) dimensional LDA space using this

transformation matrix. The ASR experiments using these features, LDAAPF, are presented in
Fig 2 together with previous results for comparison purpose. It can be observed from the figure
that using LDA didn't provide any benefit for ASR with clean data. Also, it performed worse
comparing to PCA extracted features and ABF when the data used in ASR was noisy. These
experiments clearly showed that using PCA in feature extraction for noisy speech recognition is
more beneficial comparing to the LDA method.

Another problem we have been working on is creating saliency map and surprise detector for
audio and speech signals. We have developed an initial model of auditory saliency model by
adapting the models for image and video developed by Itti & Baldi [2005] to audio signals. In
this model, first the spectrum of sound is estimated using the early auditory model as previously
discussed, and fed to the system as two dimensional time-frequency map. In the second stage this
image map is analyzed by extracting a set of features that is similar to those stages in the
auditory system. The selected features are intensity, frequency features, temporal features,
orientations, and pitch distribution. These features are extracted using spectro-temporal receptive
filters mimicking the analysis stages in primary auditory cortex: the intensity filter corresponds
to receptive fields with only an excitatory phase selective for a particular region, the frequency
feature filters corresponds to receptive fields with an excitatory phase and simultaneous
inhibitory side bands, temporal filters corresponds to receptive fields with an inhibitory phase
and a subsequent excitatory phase, orientation filters corresponds to neurons sensitive to motion
energy, and pitch distribution is calculated from intensity feature map. Multiple scales are
created using these spectro-temporal filters, each being a resampled version of the previous.



Then, each feature map is computed by center-surround operation akin to local cortical
inhibition. It is implemented in the model by comparing fine and coarse scales. In the next stage,
obtained feature maps are normalized and combined across-scales. At the last stage final maps
are summed to output the final auditory saliency map. This is the description of our pre-mature
model we developed for auditory saliency map. We are presently working on it to tune the
parameters, and establish the details of all the parts, and to create appropriate test samples for it.

Summary and Future Work:

"* We developed a new set of features by introducing nonlinear compression effect due to the
outer hair cells into our auditory model, and then applied PCA. This new set of features
provided significant WER improvement in ASR experiments for noisy speech.

"* We replaced PCA step in our model with LDA to focus on feature discrimination at the
output of our auditory model. The experiment showed that LDA didn't provide any benefit
for ASR with clean data, and it was more sensitive to noise comparing to PCA.

"* We developed an initial model for auditory saliency map. We are working on it to get a
complete working model, and also to find appropriate test sets.

"* Our robust ASR research results will be summarized in a paper:
"Bio-inspired signal processing for robust automatic speech recognition", by Ozlem Kalinli,
Shrikanth Narayanan (under preparation)

"* Our earlier work noise discrimination is accepted for ICASSP 2007:
"Discriminating two types of noise sources using Cortical Representation and dimension
reduction technique", by Shiva Sundaram, Shrikanth Narayanan
Accepted ICASSP 2007. Honolulu, Hawaii, USA.

"* Also, our work on the signal representation framework has been accepted at ICASSP:
Jorge Silva, Shrikanth Narayanan. Optimal Wavelet Packets Decomposition Based On A
Rate-Distortion Optimality Criterion. In Proc. ICASSP, Honolulu, Hawaii, April 2007.

4. Developing an integrated perceptual system

Progress with large-scale system integration efforts has been made in two directions. First, we
have achieved a near complete specification of the various modules and data structures which
will be used in a model that integrates attention, object recognition, rapid computation of the
hollistic "gist" of a scene, and a symbolic reasoning back-end. A key new concept which has
emerged from this specification work is that of the "semantic representation" of a scene, which is
an intermediary between volatile visual representations which change as the scene does, and
long-term knowledge. The semantic representation is constructed incrementally as attention
scans a scene (with possible biases towards some scene locations derived from gist) and the
successively attended locations are identified.

As this sequential process builds up some incomplete and preliminary understanding of the
scene, the cognitive back-end in turn biases attention towards desired new targets (e.g., if a hand
is attended to, look for the associated face). To achieve this, we have implemented a new
variation on the saliency map theme, where a set of desired object features can be specified at the



top (e.g., look for small red elongated objects), and that specification is used at the early visual
processing stages to compute a probability that such an object is present at a given image
location. We have successfully started applying this approach to simple problems, such as
clearing up a table using a robot arm. In this toy problem, a video camera mounted on the wrist
of our robot arm first gets a full bird's eye view of the entire workspace. Attention then selects
one object, which happens to be the most salient. Low-level visual features of that object are then
used to bias the saliency computation while our arm's gripper (and the camera) moves towards
the selected object, making the visual servoing of the gripper to the object very simple and robust
because the biased saliency map responds much more strongly to the selected object than to
other objects or background clutter.

Our system is in its infancy but operates robustly in real time, and is able to clear a desk from all
objects placed on it in a reliable manner.
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